COMPARISON OF THERAPEUTIC RESULTS OF MONOCANALICULAR AND BICANALICULAR INTUBATION FOR CONGENITAL NASOLACRIMAL DUCT OBSTRUCTION

SUMMARY
Purpose: To compare the success rate of monocanalicular (MI) and bicanalicular intubation (BI) in congenital nasolacrimal duct obstruction (CNLDO).
Methods: MI through the inferior canaliculus and BI were performed under general anaesthesia in children from 7 to 24 months old with CNLDO. Only children after unsuccessful conservative therapy and two and more probings were included in the study. The tubes were removed 3 months after intubation and the therapeutic success was evaluated 6 months after intubation.
Results: There were performed 139 MI in 114 children and 119 BI in 88 children. The success rate 6 months after intubation is 135/139 (97.1%) in MI, 114/119 (95.8%) in BI and the difference in therapeutic results between MI and BI is not significant (p = 0.737).
Conclusion: Silicone intubation is an effective procedure for treating CNLDO without difference in therapeutic success between MI and BI.
Key words: congenital nasolacrimal duct obstruction (CNLDO), monocanalicular intubation (MI), bicanalicular intubation (BI)

INTRODUCTION
Intubation of the nasolacrimal duct with a silicone cannula in the case of CNLDO is a procedure indicated as a rule following unsuccessful conservative therapy and repeated probings. The principle of the operation consists in breaking the obstruction in the nasolacrimal duct and temporary introduction of a silicone cannula into the lacrimal pathways. The cannula acts here as a stent, i.e. it maintains their lumen, but does not secure drainage itself. The silicone cannula may be introduced via both lacrimal canaliculi, referred to as bicanalicular intubation (BI), which was first performed in the 1970s [22]. The cannula may also be introduced only through one canaliculus, the superior or the inferior, which is referred to as monocanicular intubation (MI), and this was first presented in the 1990s [7]. Today both MI and BI are used in the treatment of CNLDO [3, 5, 6, 7, 8, 13, 14]. As a result the aim of our study is to compare the therapeutic results of both of these surgical techniques.

METHODOLOGY
In the period from 2006 – 2009, 139 MI procedures were performed via the inferior canaliculus (fig. 1) on 114 children, and 119 BI procedures (fig. 2) were performed on 88 children at the Department of Otorhinolaryngology and Head and Neck Surgery at the University Hospital in Ostrava. The indication for surgery was congenital nasolacrimal duct obstruction following unsuccessful conservative therapy and after 2 or more unsuccessful probings. The study included children aged 7 – 24 months at the time of surgery, and cases with previously performed intubation, balloon dilation of the nasolacrimal duct or dacryocystorhinostomy were excluded. Conditions with defects of the position and function of the eyelids, with pathologies of the lacrimal puncta and canaliculi, craniofacial anomalies, amniocele, acute dacryocystitis and and children with Down’s syndrome were also not assessed. All operations were performed under general anaesthesia in co-operation with an ophthalmologist and otorhinolaryngologist, using rigid nasal endoscopes, and in all cases monocanicular and bicanalicular intubation sets from the firm ELLA-CS s.r.o. Hradec Králové were used. The children were examined in outpatient care 1, 3 and 6 months after intubation. At all follow-up examinations the condition of lacrimation and secretion of the ocular aperture was determined, and drainage of the lacrimal pathways was always examined using a fluorescein dye disappearance test (FDT). Lacrimation and secretion of the ocular aperture were evaluated subjectively by the parents and objectively by the doctor (lacrimation – present, absent, secretion – present, absent), and FDT was evaluated according to Meyer et al. [16] as negative (FDT 0) – full drainage, slightly positive (FDT 1) – partial drainage, and highly positive (FDT 2) – without drainage. The cannulas were removed always under local anaesthesia 3 months after the operation, and the therapeutic effect of intubation was defined as a condition without subjective or objective manifestations of lacrimation and secretion of the ocular aperture simultaneously with full drainage of the lacrimal pathways (FDT 0).

In the statistical evaluation, a non-parametric Wilcoxon
test was used for comparison of the average age in MI and BI. Evaluation of the therapeutic effect of MI and BI 6 months after intubation was performed using a Pearson’s chi-squared test for two selections, and if the condition for its use was not met the results were processed using a Fisher’s exact test. The statistical tests were evaluated on a level of significance of 5 %.

RESULTS

258 silicone intubations of the nasolacrimal duct were evaluated, of which MI of the inferior canaliculus 139/258 (54%) and BI 119/258 (46%). The youngest patient at the time of surgery was aged 7 months, the oldest 24 months, and no statistically significant difference was determined between the mean age of the children undergoing MI (11.4 months) and BI (11.2 months) (p=0.191). At a follow-up examination 6 months after intubation, the therapeutic effect in the case of MI via the inferior canaliculus is 135/139 (97.1%), for BI 114/119 (95.8%) (fig. 3), and there is no statistically significant difference between the two types of intubation (p=0.737).

DISCUSSION

Silicone intubation of the nasolacrimal duct was first described by Quickert and Dryden in 1970, and became the standard procedure in the treatment of congenital nasolacrimal duct obstruction [1 – 10, 13, 14, 17, 22]. As a rule conditions following unsuccessful conservative therapy and one or more probings are indicated for intubation, and these are also the indication criteria used in our evaluated cohort [1, 4, 9, 14, 25]. However, sometimes intubation may be performed as the first intervention procedure without prior probings [5, 6]. The operation is performed under general anaesthesia with the possible use of an endoscopic technique [3, 12, 13, 17, 20, 23]. Use of endoscopes enables the performance of a large part of the operation under visual control, thereby improving its quality and reducing the time of the procedure. All our intubations were performed in this manner, in standard co-operation of an ophthalmologist and otorhinolaringologist. MI may be introduced via both the upper [6, 8, 10], and inferior lacrimal canaliculus [13, 14]. At our centre we chose the inferior canaliculus for MI, because we primarily use this in diagnosis and surgery of the lacrimal pathways.

Several studies have dealt with the therapeutic effect in intubation. However, most of these evaluate each type of intubation separately, and the effect in the case of MI is within the range of 67.6% to 97.1%, and for BI from 62.2% to 100.0% [8, 10, 13, 17, 21, 25]. It is difficult to compare the results mainly due to the lack of uniformity concerning the definition of the effect. Some consider the effect to be merely the absence of lacrimation or secretion of the eye, or both simultaneously [8, 14], others describe it as a subsidence of clinical symptoms with generated drainage of the lacrimal pathways [6, 21, 25]. Sometimes the effect is divided into full, partial and none [10, 13]. In our evaluation we defined the therapeutic effect “strictly” as a condition without subjective or objective manifestations of lacrimation and secretion of the ocular aperture, simultaneously with full drainage of the lacrimal pathways as confirmed by
FDT.

Some authors directly compare the therapeutic results of both types of intubations. Lee et al. evaluate 30 MI procedures via the inferior canaliculus and 30 BI. The average age upon performance of MI was 23.1 months, and in the case of BI 23.3 months. All canulas in the case of MI were removed under local anaesthesia, in the case of BI 66.7% of cannulas were removed under general anaesthesia. The authors define the therapeutic effect as a “complete subsidence of symptoms” with a result of 90.0% for MI and 93.3% for BI, in which no significant difference is found between the two types of intubation [14]. Komínek et al. present a cohort of 35 MI via the inferior canaliculus and 35 BI in children aged 10 – 30 months. The canulas were removed under local anaesthesia 3 – 4 months after intubation, and the therapeutic effect was defined as full subsidence of symptoms or only residual symptoms always with FDT 0-1. The success rate for MI is 97.1%, for BI 88.6%, and no statistically significant difference was found between the two techniques [13].

Fayet et al. processed a cohort of 43 MI via the upper anal canaliculi, and the removal of the cannula is also simpler. For these reasons at our centre we have a slight preference for MI, which is the method of first choice upon intubation of the nasolacrimal duct.

CONCLUSION

Upon congenital nasolacrimal duct obstruction, MI and BI rank among the standard procedures in the lacrimal pathways. The therapeutic effect of these operations is high, without a significant difference between the two techniques. Selection of the type of intubation is within the competence of the operating team, taking into account the technical facilities, experience and customs of the given centre.

LITERATURE

20. Pediatric Eye Disease Investigator Group:


